p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.707C24, C24.457C23, C22.4802+ 1+4, C22.3672- 1+4, C22⋊C4.4Q8, C23.47(C2×Q8), C2.70(D4⋊3Q8), (C2×C42).727C22, (C22×C4).613C23, (C23×C4).179C22, C23.8Q8.67C2, C23.4Q8.30C2, C22.169(C22×Q8), C24.C22.81C2, C23.81C23⋊131C2, C23.83C23⋊129C2, C23.65C23⋊162C2, C2.41(C22.54C24), C2.C42.411C22, C2.48(C23.41C23), C2.48(C22.53C24), C2.118(C22.33C24), (C2×C4).93(C2×Q8), (C2×C4).248(C4○D4), (C2×C4⋊C4).517C22, C22.568(C2×C4○D4), (C2×C22⋊C4).330C22, SmallGroup(128,1539)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.707C24
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=f2=bcd, g2=cb=bc, eae-1=gag-1=ab=ba, ac=ca, faf-1=ad=da, bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, geg-1=bce, fg=gf >
Subgroups: 388 in 204 conjugacy classes, 96 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C24, C2.C42, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C23×C4, C23.8Q8, C23.8Q8, C24.C22, C23.65C23, C23.81C23, C23.4Q8, C23.83C23, C23.707C24
Quotients: C1, C2, C22, Q8, C23, C2×Q8, C4○D4, C24, C22×Q8, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.33C24, C23.41C23, D4⋊3Q8, C22.53C24, C22.54C24, C23.707C24
(2 56)(4 54)(5 26)(6 22)(7 28)(8 24)(9 43)(11 41)(13 45)(15 47)(17 33)(18 61)(19 35)(20 63)(21 37)(23 39)(25 40)(27 38)(29 58)(31 60)(34 50)(36 52)(49 64)(51 62)
(1 55)(2 56)(3 53)(4 54)(5 37)(6 38)(7 39)(8 40)(9 43)(10 44)(11 41)(12 42)(13 45)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(21 26)(22 27)(23 28)(24 25)(29 58)(30 59)(31 60)(32 57)(33 64)(34 61)(35 62)(36 63)
(1 12)(2 9)(3 10)(4 11)(5 28)(6 25)(7 26)(8 27)(13 31)(14 32)(15 29)(16 30)(17 35)(18 36)(19 33)(20 34)(21 39)(22 40)(23 37)(24 38)(41 54)(42 55)(43 56)(44 53)(45 60)(46 57)(47 58)(48 59)(49 62)(50 63)(51 64)(52 61)
(1 44)(2 41)(3 42)(4 43)(5 21)(6 22)(7 23)(8 24)(9 54)(10 55)(11 56)(12 53)(13 58)(14 59)(15 60)(16 57)(17 64)(18 61)(19 62)(20 63)(25 40)(26 37)(27 38)(28 39)(29 45)(30 46)(31 47)(32 48)(33 49)(34 50)(35 51)(36 52)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 34 3 36)(2 17 4 19)(5 58 7 60)(6 48 8 46)(9 35 11 33)(10 18 12 20)(13 23 15 21)(14 38 16 40)(22 32 24 30)(25 59 27 57)(26 45 28 47)(29 39 31 37)(41 64 43 62)(42 52 44 50)(49 54 51 56)(53 63 55 61)
(1 45 42 31)(2 32 43 46)(3 47 44 29)(4 30 41 48)(5 61 23 20)(6 17 24 62)(7 63 21 18)(8 19 22 64)(9 14 56 57)(10 58 53 15)(11 16 54 59)(12 60 55 13)(25 35 38 49)(26 50 39 36)(27 33 40 51)(28 52 37 34)
G:=sub<Sym(64)| (2,56)(4,54)(5,26)(6,22)(7,28)(8,24)(9,43)(11,41)(13,45)(15,47)(17,33)(18,61)(19,35)(20,63)(21,37)(23,39)(25,40)(27,38)(29,58)(31,60)(34,50)(36,52)(49,64)(51,62), (1,55)(2,56)(3,53)(4,54)(5,37)(6,38)(7,39)(8,40)(9,43)(10,44)(11,41)(12,42)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,26)(22,27)(23,28)(24,25)(29,58)(30,59)(31,60)(32,57)(33,64)(34,61)(35,62)(36,63), (1,12)(2,9)(3,10)(4,11)(5,28)(6,25)(7,26)(8,27)(13,31)(14,32)(15,29)(16,30)(17,35)(18,36)(19,33)(20,34)(21,39)(22,40)(23,37)(24,38)(41,54)(42,55)(43,56)(44,53)(45,60)(46,57)(47,58)(48,59)(49,62)(50,63)(51,64)(52,61), (1,44)(2,41)(3,42)(4,43)(5,21)(6,22)(7,23)(8,24)(9,54)(10,55)(11,56)(12,53)(13,58)(14,59)(15,60)(16,57)(17,64)(18,61)(19,62)(20,63)(25,40)(26,37)(27,38)(28,39)(29,45)(30,46)(31,47)(32,48)(33,49)(34,50)(35,51)(36,52), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,34,3,36)(2,17,4,19)(5,58,7,60)(6,48,8,46)(9,35,11,33)(10,18,12,20)(13,23,15,21)(14,38,16,40)(22,32,24,30)(25,59,27,57)(26,45,28,47)(29,39,31,37)(41,64,43,62)(42,52,44,50)(49,54,51,56)(53,63,55,61), (1,45,42,31)(2,32,43,46)(3,47,44,29)(4,30,41,48)(5,61,23,20)(6,17,24,62)(7,63,21,18)(8,19,22,64)(9,14,56,57)(10,58,53,15)(11,16,54,59)(12,60,55,13)(25,35,38,49)(26,50,39,36)(27,33,40,51)(28,52,37,34)>;
G:=Group( (2,56)(4,54)(5,26)(6,22)(7,28)(8,24)(9,43)(11,41)(13,45)(15,47)(17,33)(18,61)(19,35)(20,63)(21,37)(23,39)(25,40)(27,38)(29,58)(31,60)(34,50)(36,52)(49,64)(51,62), (1,55)(2,56)(3,53)(4,54)(5,37)(6,38)(7,39)(8,40)(9,43)(10,44)(11,41)(12,42)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,26)(22,27)(23,28)(24,25)(29,58)(30,59)(31,60)(32,57)(33,64)(34,61)(35,62)(36,63), (1,12)(2,9)(3,10)(4,11)(5,28)(6,25)(7,26)(8,27)(13,31)(14,32)(15,29)(16,30)(17,35)(18,36)(19,33)(20,34)(21,39)(22,40)(23,37)(24,38)(41,54)(42,55)(43,56)(44,53)(45,60)(46,57)(47,58)(48,59)(49,62)(50,63)(51,64)(52,61), (1,44)(2,41)(3,42)(4,43)(5,21)(6,22)(7,23)(8,24)(9,54)(10,55)(11,56)(12,53)(13,58)(14,59)(15,60)(16,57)(17,64)(18,61)(19,62)(20,63)(25,40)(26,37)(27,38)(28,39)(29,45)(30,46)(31,47)(32,48)(33,49)(34,50)(35,51)(36,52), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,34,3,36)(2,17,4,19)(5,58,7,60)(6,48,8,46)(9,35,11,33)(10,18,12,20)(13,23,15,21)(14,38,16,40)(22,32,24,30)(25,59,27,57)(26,45,28,47)(29,39,31,37)(41,64,43,62)(42,52,44,50)(49,54,51,56)(53,63,55,61), (1,45,42,31)(2,32,43,46)(3,47,44,29)(4,30,41,48)(5,61,23,20)(6,17,24,62)(7,63,21,18)(8,19,22,64)(9,14,56,57)(10,58,53,15)(11,16,54,59)(12,60,55,13)(25,35,38,49)(26,50,39,36)(27,33,40,51)(28,52,37,34) );
G=PermutationGroup([[(2,56),(4,54),(5,26),(6,22),(7,28),(8,24),(9,43),(11,41),(13,45),(15,47),(17,33),(18,61),(19,35),(20,63),(21,37),(23,39),(25,40),(27,38),(29,58),(31,60),(34,50),(36,52),(49,64),(51,62)], [(1,55),(2,56),(3,53),(4,54),(5,37),(6,38),(7,39),(8,40),(9,43),(10,44),(11,41),(12,42),(13,45),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(21,26),(22,27),(23,28),(24,25),(29,58),(30,59),(31,60),(32,57),(33,64),(34,61),(35,62),(36,63)], [(1,12),(2,9),(3,10),(4,11),(5,28),(6,25),(7,26),(8,27),(13,31),(14,32),(15,29),(16,30),(17,35),(18,36),(19,33),(20,34),(21,39),(22,40),(23,37),(24,38),(41,54),(42,55),(43,56),(44,53),(45,60),(46,57),(47,58),(48,59),(49,62),(50,63),(51,64),(52,61)], [(1,44),(2,41),(3,42),(4,43),(5,21),(6,22),(7,23),(8,24),(9,54),(10,55),(11,56),(12,53),(13,58),(14,59),(15,60),(16,57),(17,64),(18,61),(19,62),(20,63),(25,40),(26,37),(27,38),(28,39),(29,45),(30,46),(31,47),(32,48),(33,49),(34,50),(35,51),(36,52)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,34,3,36),(2,17,4,19),(5,58,7,60),(6,48,8,46),(9,35,11,33),(10,18,12,20),(13,23,15,21),(14,38,16,40),(22,32,24,30),(25,59,27,57),(26,45,28,47),(29,39,31,37),(41,64,43,62),(42,52,44,50),(49,54,51,56),(53,63,55,61)], [(1,45,42,31),(2,32,43,46),(3,47,44,29),(4,30,41,48),(5,61,23,20),(6,17,24,62),(7,63,21,18),(8,19,22,64),(9,14,56,57),(10,58,53,15),(11,16,54,59),(12,60,55,13),(25,35,38,49),(26,50,39,36),(27,33,40,51),(28,52,37,34)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | ··· | 4P | 4Q | ··· | 4V |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | - | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | Q8 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C23.707C24 | C23.8Q8 | C24.C22 | C23.65C23 | C23.81C23 | C23.4Q8 | C23.83C23 | C22⋊C4 | C2×C4 | C22 | C22 |
# reps | 1 | 3 | 2 | 4 | 2 | 2 | 2 | 4 | 8 | 3 | 1 |
Matrix representation of C23.707C24 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 3 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 3 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 3 | 2 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 3 |
0 | 0 | 0 | 0 | 1 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 4 | 0 | 0 |
0 | 0 | 2 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 2 |
0 | 0 | 0 | 0 | 4 | 1 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,3,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,3,2,0,0,0,0,0,0,3,3,0,0,0,0,0,2],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,1,0,0,0,0,3,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,2,0,0,0,0,4,1,0,0,0,0,0,0,4,4,0,0,0,0,2,1] >;
C23.707C24 in GAP, Magma, Sage, TeX
C_2^3._{707}C_2^4
% in TeX
G:=Group("C2^3.707C2^4");
// GroupNames label
G:=SmallGroup(128,1539);
// by ID
G=gap.SmallGroup(128,1539);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,784,253,758,723,604,1571,346,192]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=f^2=b*c*d,g^2=c*b=b*c,e*a*e^-1=g*a*g^-1=a*b=b*a,a*c=c*a,f*a*f^-1=a*d=d*a,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,g*e*g^-1=b*c*e,f*g=g*f>;
// generators/relations